
A UNIFORM ONTOLOGY FOR SOFTWARE INTERFACES

Final Report

Period Covered: 2/28/2001- 2/28/2002

NASA Grant NAG 1-2271

W&M Accounting No. 301511

Principal Investigator: Stefan Feyock

Computer Science Department

College of William & Mary

Williamsburg, VA 23187

1 RESEARCH GOALS

It is universally the case that computer users who are not also computer specialists prefer

to deal with computers _ in terms of a familiar ontology, namely that of their application

domains. For example, the well-known Windows ontology assumes that the user is an

office worker, and therefore should be presented with a "desktop environment" featuring

entities such as (virtual) file folders, documents, appointment calendars, and the like,

rather than a world of machine registers and machine language instructions, or even the

DOS command level.

The central theme of this research has been the proposition that the user interacting with a

software system should have at his disposal both the ontology underlying the system, as

well as a model of the system. This information is necessary for the understanding of the

system in use, as well as for the automatic generation of assistance for the user, both in

solving the problem for which the application is designed, and for providing guidance in

the capabilities and use of the system.

Having the ontology and model available makes it possible to provide a number of

facilities, including the following:

Automatic generation of application- and system-level help with a uniform look
and feel

Assistance in searching for solutions of the application problem, including

automatic recognition of tool applicability

1 We will use the term "computers" to refer to the whole of the computer system as perceived by the user.
hardware, entailing processor, monitor, and peripherals, and software, from the operating system to

programming tools to applications,

Provisionof guidanceonhowto applythesefacilities,giventhe presentstateof
thecomputationandtheinteractivesession.

Recognitionandretrievalof knownprecedentswhoserelevanceis determinedon
thebasisof similarity at theontologicallevel

2 RESEARCH APPROACH

2.1 Ontoiogy Specification

For any complex system, in particular computer/software systems, the view and the

underlying implementation will in most cases have radically different ontologies. Given

that the intent is to shield the user from the underlying complexity of widely diverse

systems, it is necessary to provide a top-level interface that is based on an ontology that is

powerful, conceptually elegant, and capable of expressing a wide variety of systems.

Formal mathematical is an obvious candidate that fulfills all of the above requirements

for specifying ontologies. Unfortunately general mathematical notation can prove

daunting for non-mathematician users, even those trained in another technical discipline.
We have therefore decided to use the mathematical modeling and specification language

Z [3]. The Z notation is, in terms of comprehensibility, quite accessible technically
trained users. It is related to relational database notation, and its data representation

system is easily translated to simpler notations such as the entity-relationship model.

2.2 The Specification Language Z

Since the intent of this project was to model a file system, the file system was first

modeled in the mathematical modeling and specification language Z [3]. The Z notation

serves both as implementation guide for the system implementor, and as view of the

system for user while the user is interacting with the system.

3 TEST BED DOMAIN: THE UNIX FILE SYSTEM

For our research the test bed of choice was the Unix file system, in particular the creation

of a responsive, user-friendly interface to this system capable of providing the user with

extensive goal-oriented assistance. This system well illustrates the relationship of

applications, models, and ontologies, and has a level of complexity comparable to the

ones that are of interest to the aviation community (as well as being more readily

available than actual aircraft).

To summarize, the application, or rather the user's view of his application, is modeled in

Z, which provides an ontology consisting of abstract sets and function on these sets. This

view level is in turn implemented in terms of an underlying system based on an

unfamiliar ontology from which the user is to be shielded. For our research this

underlying system is based on MOPs [1], which feature a frame-based universal ontology
whose details must be hidden from the user.

3.1 The Underlying Implementation

The implementation of the Z-specified user interface described above was in terms of

Schank's MOp2-based programming system [1] This system provides a powerful AI-

based programming capability, which is indispensable for determining the intent of the

user, inferring from this the user's needs, and then providing the required services,

including

natural language understanding capabilities

case-based reasoning (so that the system can learn and improve its capabilities on

the basis of experience.

a powerful knowledge representation system

Unfortunately Schank's MOP-based reasoning system, as well as the ontology on which

is tis based, is comprehensible only to the specialist who has devoted extensive study to

this programming system and methodology. Furthermore, the MOP-based system's

ontology is quite general, and therefore its ontology is not specific to any particular

application area, in particular the application area whose ontology is familiar to the user.

It is therefore necessary to present a view of the application ontology that hides the

system's implementation and presents the user with only the familiar application

ontology.

* The user-oriented ontology of our test bed is an abstraction (aka simplification) of the

Unix file system.

* How the view works with/translates to implementation (DMAP as natural language

understanding system)

2 Memory Organization Packet

4 FUNDAMENTAL DEFINITIONS

In the discussion below we will treat as isomorphic the concepts of sequence (mapping

from 1..n into some set S) and lists with elements from S. In our context such lists will

also be referred to as paths.

Given this convention, we will model the file hierarchy as a set of lists (paths). This

amounts to using lists (rather than just atoms) as the names of files or directories. Atomic

names are then converted into list names by concatenating them onto the content of the

environment variable "." (synonym: CURRENT_DIRECTORY). We will accordingly treat

as equivalent the string notation _n_',n21... ink! and the list notation (l nl ne ... nk).

Definition: Ifsl and s2 are lists (in general: sequences) over a set A of atoms, then sl is

said to be aprefix of s2 iffs2 =-- sl il s for some sequence s over A. Ifs .t= (), then sl is

said to be a proper prefix of s2.

4.1 Representation Of Trees As Sets Of Full Paths:

Let TA be a tree with nodes labeled by members of some set A. We can represent any

path in tree TA as a list 3{nl,...,nk} of the node labels on that path, beginning with the
node closest to the root.

Special case: () represents the empty path.

We will say that a path p is afullpath ifp is a path in TA from the root to a leafofTA.

Let S be a set of lists (in general: sequences) over a set A of atoms, having the property

that ifs _S, then no proper prefix ofs _S. Equivalently, ifs _S, then s is not a proper

prefix of any other s' in S.

We will call sets of lists S having this property prefix-free.

It is evident that ifS is a set of lists representing the set of all full (root-to-leaf)paths of

some tree T, then, since no proper prefix of a full path of a tree Tcan itself be a full path

of T, S must be prefix-free.

Conversely, as can easily be shown by an inductive proof, ifS is a prefix-free set of lists,

then S is the set of all full paths of some tree T.

3 We will use "V'to denote "root." In list notation this becomes (\).

Thus any tree Tover a set A can be represented as a set of lists over A, namely the set of

full paths of T.

Let R be some binary relation. Then:

domain(R) = [X lx R _}

range(R) - {x] _ R x }

xR denotes {y j xRy }

Ry denotes {x LxRy }

denotes the override operator, defined as follows:

Let land g be functions, i.e., (in Z's notation) sets of pairs of the form { x I-> y }.

Thenf_ g =def = Or\ {x l-> y" (3 z)[x 1-> z egl}) U g.

It is evident that, in database terms, 6) is an update operation on relation f"

ifx/-> z occurs in g, then update any tuples of the form x !-> y occurring infto x I-> z.

4.2 Notational Conventions and Auxiliary Definitions

We will use the following notations and definitions in the discussion below:

Let ipath (implied path) denote the full expanded path name,

to wit "." [J<file spec>, of the file.

Let DIRECTORY denote the path set representing the file hierarchy.

Let "-" (synonym: HOME) denote the list name of the user's home directory,

and "." (synonym: CURRENT_DIRECTORY) denote the current directory.

5 Z DEFINITION OF THE UNIX FILE SYSTEM

5.1 Data Structure Definitions In Z

[CHAR]
SPACE == {' ']

EOF == {eof}

COLON == {:}

SLASH == {/}

// The set of characters

// SPACE is the space character

// EOE is the end-of-file character

PERIOD == {. }

WORD == fseql(CHAR \ {BLANK, EOF, SLASH, COLON})

[PERSON}

[FILE] // set of abstract entities representing files

FILE TOKEN subset FILE; // FILE TOKEN is the set of existing files

(i.e., in-use file tokens)

TEXT == fseql (CHAR \ {FOE}) // TEXT is a sequence of any CHAR but FOE

FILE TEXT ==TEXT I L <FOE> // FILE TEXT is the text in text files

USER subset PERSON;

GROUP subset POWERSET(USER) ; // a group is a set of users

FILE NAME subset WORD; // file names are finite non-empty seqs of CHAR

(except EOF)

PATH NAME subset fseq(FILE_NAME) ; // pathnames are lists (possibly

empty) of filenames

l DIRECTORY subset PATH NAME;

I Constraint: DIRECTORY is a tree over FILE_NAME

PERMISSIONS subset {I .. 9} -> {0,i} // permissions are bit strips of

length 9

FILE TYPE == {d, -} // is this file a directory or not?

BYT_ == N

user id: USER // the current user

Groups: GROUP x OWNER // Groups is an m:n relation

path2token_map: PATH_NAME -> FILE _TOKEN // could be m:l (remember

links?)

token2permission_map: FILE _TOKEN -> PERMISSIONS // I:I into; each

file has a permission

token2type_map: FILE _TOKEN -> FILE_TYPE // n:l; every file is either

a directory or regular file

token2owner_map: FILE TOKEN -> USER // n:l; every file has an owner

token2content_map: FILE TOKEN -> FILE_TEXT;

name2path_map: FILE NAM_ -> PATH_NAME
mask: USER -> PERMISSION // default permissions associated with

user

name2path_map (file_name) == CURRENT_DIRECTORY I J file_name

name2 token__map (file_name) == pa th2 token_map (name2pa th_map (fil e_name))

i file2group_map: FILE_TOKEN -> GROUP

I Constraints: file2group_map(f) in Groups (token2owner_map(f))

I // the file's group must be a group the owner belongs to.

// some useful macro functions:

owner (f: FILE NAME) ==

token2owner_map (pa th2token_map (name2pa th__map (f)))

permissions (f : FILE_NAME) ==

tok en2permiss i ons_map (pa th2 tok en_map (name2pa th_map (f)))

type (f : FILE_NAME) == token2type_map (path2token_map (name2path_map (f)))

new FILE TOKEN() == /*return*/ f, where f is in FILE - FILE TOKEN

new file(fname?: FILE_NAME, type?: FILE_TYPE,--permissions?:

PERMISS IONS } ==

{ let new_path = CURRENT_DIRECTORY I [fname?;

let new token = new FILE TOKEN();

DIRECTORY' = DIRECTORY +--{new_path ! } ;

path2token_map' = path2token map _ {new__path -> new_ token!}

token2 owner_map ' = token2owner_map _ {new_token -> user_id }

token2permission map' = token2 permission map _ {new_token -

>permissions?}

token2type_map' = token2owner_map _ {new_token -> type?}

}

5.1.1 The Size Attribute For Files

BYTES : N // N is the set of natural numbers

file_size_map: FILE_TOKEN -> BYTES // filesize_map returns the size

of a file

5.1.2 Date Information For Files

DAY == 1..31

MONTH == {Jan, Feb, Mar, Apt, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}

YEAR: N // YEAR is a natural number

HOUR == {00, 01, 02, 03, ... , 22, 23}

// HOUR is a number from 00 to 23 with leading zero pattern

MINUTE == {00, 01, 02, ... , 58, 59}
// MINUTE is a number from 00 to 59 with leading zero pattern

TIME == HOUR f [COLON l[MINUTE>

OLD DATE: MONTH il DAY [l YEAR>

// DATE is a MONTH concatenated with a DAY concatenated with a YEAR.

NEW DATE: MONTH Jl DAY II TIME

DATE: NEW DATE U OLD DATE // DATE is a NEW DATE or an OLD DATE.

CURRENT DATE: NEW DATE // CURRENT DATE is a NEW DATE

last_date_map : FILE TOKEN +> DATE // date of last access

5.2 Operator Definitions In Z

Actually, the Z specification system does not define operators per se; instead, it allows the definition of
predicates that give the relationship between two states of the system being specified. This allows operators
to be defined as functions that map a "before" state, specified by a set of preconditions, into an "after" state
specified by a set of postconditions. In the following definitions Effect describes this state-to-state mapping.

chmod (f?: FILE_NAME, new_permissions?: PERMISSIONS)

Preconditions:

owner(f?) = USER ID // must own the file to change permissions

Effect:

let ftoken :: name2token map(f?);

token2permission_map' :

token2permission_map

{(ftoken -> token2permission_map(ftoken)) V new_permissions?}

// do a logical OR of f?'s permissions and new permissions?

compress(f?: FILE NAME)

Effect:

let f = f? J J ".z"

new file(f, // name of new (compressed) file

-, // type of new (compressed) file

permissions(f)

// permissions of compressed file: same as of old file

)

file_size_map(ftoken) < file size_map((FILE TOKEN) f?)
// cast f? to TOKEN TYPE

cp(f?, fcopy?: FILE NAME)

Effect:

new_file(fcopy?, // name of new file

f, // type

mask(user id), // default permissions associated with user

)

token2content map((FILE_TOKEN) fcopy?) :=

token2content_map((FILE_TOKEN) f?)

is(name?: FILE NAME, name list!: fseq[FILE NAME])

// name list!--is a list _f file names

Effect:

name list! = (n : CURRENT DIRECTORY I i name? I I n is in DIRECTORY}

// Note: name? Could be the empty sequence,

//in which case the current directory is returned

mkdir(fname?: FILE NAME)

l new token!: FILE TOKEN;

L new_path!: PATH_NAME; // these two are local variables

8

// Create a new empty directory named fname

//under the current directory

new file(fname?,

d, // type

mask(user id), // default permissions associated with user

)

my(old fname?, new_fname?: FILE NAME)

let old_path name = name2path_map(old_fname?);

// get the full pathname of the old file

let new_path_name = name2path_map(new_fname?);

// construct the full pathname of the new file

let token : path2token_map (old path_name);

// get the file token itself

DIRECTORY' = DIRECTORY \ {old_path_name} + { new_path_name };

path2token_map' =

path2token_map \ {old path name I-> token} U

{ new_path_name l-> token};

pwd(current_directory!)
+

current_directory! = CURRENT_DIRECTORY

rm(fname?: FILE NAME)

Precondition: file2type_map(fname?) == -

let path_name = name2path_map(fname?);

// get the full pathname of the file

let token = path2token_map (path name);

// get the file token itself

DIRECTORY' = DIRECTORY \ {path_name};

path2token_map' = path2token_map \ (path_name i-> token};

if {p : path2token_map (p) == token}== {]

then FILE TOKEN' = FILE TOKEN \ {token}

// if no more links to this file, then remove it.

+

rmdir(dname?: FILE NAME)

Precondition: file2type_map(dname?) == d

// dname? must be a directory

let path = name2path map(dname?);

// get the full pathname of the directory

let token = path2token_map (path); // get the file token itself

DIRECTORY' = DIRECTORY \ {p : path is a prefix of p};

// remove path & all its children

path2token_map' = path2token map \ {path I-> token};

I if {p : path2token_map (p) == token]== {}
1 then FILE TOKEN'= FILE TOKEN\ {token}
I // if no more links to this directory, then remove it.

6 THE MOP IMPLEMENTATION LEVEL

6.1 Designing An Interface For A File System

The most basic and important part of a computer's task is editing,

modifying, and executing files. Thus, the first part of creating a

natural language interface is to create a natural language interface

with the file system.

6.2 Organizing A File System

The following section describes the logic used to organize the file

system interface using Case-Based Reasoning architecture. The First

task is to organize the main MOPs.

6.2.1 Determining Mops

The first step in organizing the actual MOPs is to determine the answer

to these questions:

- What needs to be recognized?

- How will it be recognized?

- What will be done once it is recognized?

This particular interface needs to recognize file system commands and

questions about files. This involves commands, file names, and file

attributes, as well as queries about each of these entities. A further

important type of question concerns system actions and reactions (and

lack of these), such as why did this command not log me out? Each item

to be recognized or concept was designed to have its own branch (i.e.,

MOP) within the hierarchy. This enables checking abstractions of the

MOPs recognized when determining the task of the interface.

For example:

If the abstraction of the concept entered is a command, then a

command is executed.

If the abstraction of the concept entered is a question,

then the answer is determined and printed.

6.2.1.1 Organizing Files

An abstract MOP m-file is defined for files and their attributes

using the defmop macro. It executes before interaction begins,

and creates the hierarchy of MOPs. While files are described

first within the paper, the attributes must be described first

within the code. The definition of a file, as well as a directory

10

(which formally is a specialization of a file), is shown below.

(defmop m-file (m-root)

(userid m-userid)

(group m-group)

(size m-size)

(userread m-access)

(userwrite m-access)

(userexecute m-access)

(groupread m-access)

(groupwrite m-access)

(groupexecu te m-access)

(worldread m-access)

(worldwrite m-access)

(worldexecute m-access))

(defmop m-directory (m-file)

(userid m-userid)

(group m-group)

(size m-size)

(userread m-access)

(userwrite m-access)

(userexecute m-access)

(groupread m-access)

(groupwrite m-access)

(groupexecute: m-access)

{worldread: m-access}

(worldwrite : m-access)

(worldexecute: m-access))

Only the abstraction MOP m-file of a file is defined before the code

executes. The MOPs describing individual files are created upon

entering the interface. The files are read by means of an is -i command

piped to a file and read back. Each occurrence of a file specification

causes the creation of an instance MOP, as well as the slots for the

attributes added to the file instance using ADD-ROLE-FILLER, defined in

[i]. After each file is read in and added, a new defphrase function is

executed to define a trigger for the file in case it is referenced

during interaction with the user. The example below illustrates adding

a new file MOP, adding three of the many slots, and, finally, the

definition of the trigger of the MOP. The trigger is set to be the name

of the file.

(defun new file (pathname

filename

useraccess

groupaccess

worldaccess

userid

group

size

month...)

(setq filemop (convertstr_symbol filename))

(cond ((not (mopp filemop))

(new-mop filemop '(m-file) 'instance nil))

(t (delete-key (mop-table 'slots)

l!

filemop)

; add userread

(let ((tuserread (convertstr_symbol (concatenate 'string "i-m-" (subseq

useraccess 0 i))))) (cond ((not (mopp tuserread))

(new-mop tuserread ' (m-access) 'instance nil)))

(add-role filler 'userread filemop tuserread))

; add userid

slot

(let ((tuserid (convertstr_symbol (concatenate 'string "i-m-"

userid))))

(cond ((not (mopp tuserid))

(new-mop tuserid ' (m-userid) 'instance nil)))

(add-role-filler 'userid filemop tuserid))

; add size slot

(let

((tsize (convertstr_symbol

(concatenate 'string "i-m-" (write-to-string size)))))

(cond ((not (mopp tsize))

(new-mop tsize '(m-size) 'instance nil)))

(add-role-filler 'size filemop tsize))

; define the phrase that will activate the mop

(let ((symfile (convertstr__symbol filename)))

(fdefphrase filemop (list symfile)))

fi i emop)

Note that if the instance of a file MOP is already defined, all slots

for that file are deleted. This enables updating of the slots with new

sizes, new access, etc.

Note also that file MOP is not set to "i-m" concatenated with the

filename, while all other instances do begin with "i-m". During many

sections of the code it is necessary to use the filename as an

argument. Not using the "i-m" relieves the code of finding the

substring of the filename MOP.

1.3.1.2 Organizing File Attributes

The file attributes are themselves MOPs, and fillers within the slots

describing the files point to the file's attributes. The defmops below

show how the attributes are defined before the interface begins to

execute.

(defmop m-attributes (m-root))

(defmop m-person (m-root))

(defmop m-group (m-attributes m-person))

(defmop m-userid (m-attributes m-person m-group))

(defmop m-size (m-attributes))

(defmop m-type (m-attributes))

(defmop m-access (m-attributes))

12

(defmop i-m-r (m-access))

(defmop i-m-w (m-access))

(defmop i-m-x (m-access))

(defmop i-m- (m-access))

(defmop m-path (m-attributes))

Chapter II of Inside Case-Based Reasoning uses a standard prefix "m-"

to define abstract concepts and a prefix "i-m-" to show an instance.

This notation is carried into the project, with the exception of the

filenames as mentioned in the note in 5.3.1.1. Below shows how we can

view the MOP attributes as a hierarchy.

z-root

/ \
/ \

m-att ributes m-person

I I Ilk \ I I
m-path / I I \ \ / /

m-type I I \ m-group /

m-size i \ I /

] m-userid

access

/ /\ \
i-m-r I \ i-m--

i-m-w i-m-x

Note that the MOPs for group and userid have two parents. MOPs may have

many different abstractions. While this feature is not used in this

particular interface, questions could relate to the users as people as

well as to an attribute of a file.

The defphrase macro is executed to create triggers for attributes:

(defphrase m-size size)

(defphrase m-size big)

(defphrase m-size little)

(defphrase m-size kb)

(defphrase m-size kilobytes)

When any of the above words - size, big, etc. - is mentioned, the m-

size concept is referenced. When any of the above words is referenced

in relation to a specific file, the role size in the mop representing

that file can be accessed. The role names should describe the abstract

attribute referenced to enable efficient searching for a file attribute

value. The slots can be looped through until a role matches the

attribute in question.

6.2.1.2 Organizing Command MOPs

The commands are defined with DEFMOPs before execution of the

interface.

; commands with no arguments

13

(defmop Is (m-noarg-command)

(defmop pwd (m-noarg-command))

(defmop ipq (m-noarg-command))

; commands with arguments

(defmop ipr (m-one-command) (file m-file))

(defmop cd (m-one-command) (path mpath))

(defmop mkdir (m-one-comnmnd) (directory m-directory))

(defmop emacs (m-one-command) (file m-file))

(defmop compress (m-one-command) (file m-file))

(defmop uncompress (m-one-command) (file m-file))

(defmop rmdir (m-one-command) (directory m-directory))

(defmop rm (m-one-command) file mfile))

(defmop mv (m-two-command) (file m-file))

(defmop cp (m-two-comman4) (file m-file))

(defmop chmod (m-four-command)

(file m-file) (group m-group)

(opera tor) (access))

Again the organization comes down to recognition. After a MOP is

recognized, it is determined to be a command by checking its parent

(abstraction) and then executed with the arguments also recognized

within the command. Below are some of the defphrases used to trigger

the command MOPs.

; defphrases

(defphrase is

(defphrase is

(defphrase Is

(defphrase is

is period)

dir period)

list period)

folder period)

(defphrase pwd pwd period)

(defphrase pwd current directory period)

(defphrase pwd which directory period)

(defphrase pwd where am I period)

(defphrase ipq ipq period)

(defphrase ipq printer queue period)

(defphrase Ipq queue)

(defphrase ipr ipr (file) period)

(defphrase ipr print (file) period)

(defphrase Ipr hard copy (file) period)

(defphrase ipr print file (file) period)

(defphrase cp

(defphrase cp

(defphrase cp

cp (file) period)

cpy (file) period)

copy (file) period)

(defphrase mkdir md period)

(defphrase mkdir make directory period)

(defphrase mkdir make folder period)

(defphrose mkdir new directory period)

(defphrase emacs emacs (file) period)

(defphrase emacs emacs (file) period)

14

(defphrase emacs edit (file) period)

Commands are broken into three categories: commands with no arguments,

commands with all defined/recognizable arguments (one-arg) , and those

with some unrecognizable arguments (two-arg) Commands without arguments

such as is or ipq are simply recognized and executed.

Commands with arguments such as emacs or Ipr must have the

file/argument entered. The argument is defined with the syntax (file):

the role file within a slot modifying the command, instead of an exact

word. The abstract version of the particular command has a role file

and a filler pointing to mfile. Any MOP triggered under m-file will

satisfy the trigger for the role (file).

(defmop emacs (m-one-cormmand) (file m-file))

(defphrase emacs emacs (file) period)

emacs testrun.file period

/ I \
m-emacs > m-file \

(file m-file) I

i
testrun.file

\

\
second, file

The triggers emacs, test.file, and period will be recognized, emacs

will be executed, and the argument for file (test.file) used. test.file

is recognized only because it was defined as described in the FILE

section above.

Commands such as mv and cp require the user to enter a word or file

destination that cannot be recognized by the parser. Concepts are

recognized only if they have a trigger that has previously been defined

by defphrase or fdefphrase. When executing MV and CP the destination

file is new and unrecognizable by the system. When a word does not

trigger any MOPs and a command requiring a destination is a possible

target, the unrecognized word is stored as a destination for subsequent

use.

6.2.1.3 Execution of the Command

There arc five types of interactions flint the parser expects to recognize: commandswith no arguments,
commands with one argument, two arguments, four arguments, and questions regarding attributes. Each of
these interactions has code defined to perform the command and answer the user. First the code for these
interactions is written as a LISP function, then the name of the function is defined as a MOP. Each type of
interaction has a slot with the name of the function to be called, get-filler is used to call the function. The
one-argument interaction is defined as follows:

(defun onearg-function (mop pred)
(setq command (pred-base pred))
OCuncallcommand

(nstring-downcase (subseq (symbol-name (slot-filler (car (mop-slots mop)))) 4))))

(defmop onearg-function (m-function))

15

(defmop m-one-command (m-command) (,getcode onearg-function))

ale fun pr_J - >mop (pred)

(let ((mop (:_lots-:>mop (pred-slots pred)

(list (pred-base pred))

t))
(start fpred-start pred)))

(format t "-&activating -s" mop)

(cond ((get-filler 'getcode (pred-base pred))

(funcatl (get-filler 'getcode pred-base pred)) mop pred)))

((for (next-pred :in (get-triggered-preds mop start))

:do (advance-pred next-pred mop))))

Each of the functions is passed the prediction and MOP in order to keep

everything uniform. The prediction contains the (target phrase base

start) where target is the MOP predicted, phrase is the part of phrase

defined to trigger the MOP and waiting to be recognized, base is the

MOP to be activated, and start is the position in the sentence where

the index pattern first started being recognized. Prediction is a list

defined in Inside Case-Based Reasoning (p358). The MOP is the specific

interaction recognized. It is important to note that inheritance causes

the filler for getcode to be retrieved from an ancestor of the MOP

pased to it if the MOP does not have the code defined Thus, if the

prediction is for emacs (test.file), a new MOP is created for this

interaction, emacs (mfile) is the parent, m-one-command is the

grandparent and role getcode is found with filler onearg-function.

6.2.1.4 Command History

The system understands "new concepts." Every time a file is deleted,

copied, etc, the information about the command is stored. When the MOPs

are activated for a command, a specific instance is instantiated into

the command and is stored as a new item of information. If rm

testrun.lsp is entered, then rm (file) becomes rm m-file which will

translate to i-m-rm testrun.lsp which is a new specific instantiation

now stored. When the user cannot find a file, there is a record of the

deletion. This can be used to help solve user problems such as not

finding a file. If a command does not have arguments, nothing new is

learned and a new instance is not stored. Only a new instantiation of a

command with a different file is stored.

It is desired that this system answer questions pertaining to files.

The most obvious question is about a file's attributes. Thus there is a

branch from z-root for the concept of attribute questions and

defphrases for recognizing questions.

; mops that relate to questions about attributes of files

(defmop attribute-questions (m-root) (getcode attribute-question-

function))

(defmop question-size (m-attribute-questions)

(file m-file)

(verb is)

16

(size m-size)

(describe kilobytes)

)

The above MOF shows how questions about the size of a file are defined

under m-attribute-questions. Note that when defining names of MOPs, any

important words that need to be recognized should be last for getting

substrings of known length (e.g., m-question-size The prefix can be a

set length, then the important words found by using the substring

function. This feature is used in many situations including attribute

questions. Below are defphrases for recognizing a questions pertaining

to the size of a file.

; defphrases relating to direct attribute questions

(defphrase m-size size)

(defphrase m-size big)

(defphrase m-size little)

(defphrase m-size kb)

(defphrase m-size kilobytes)

(defphrase m-question-size how (size) (file) period)

(defphrase m-question-size what (size) file) period)

(defphrase m-question-size (size) file) period)

Given the question (c '(how big is testrun.file)), the interface should

fetch the size of testrun.fi!e and tell the user the size of

testrun.file.

The system will recognize "how" and activate any MOPs starting with

"how". "big" will activate the concept m-size as well as continue the

activation of m-question-size. "is" will be ignored, but will not

affect the activation of m-question-size. "Testrun.file" will activate

m-file and continue m-question-size. The period is automatically put at

the end of all interactions to signal the end. We have the following

MOP:

(m-question-size (file i-m-testrun.file) (size m-size))

When the question is recognized, the slots are looped through to answer

the question and the file attribute matching the target of the question

is found using routines provided by Inside Case-Based Reasoning. The

following code performs this task:

(de fun attribute-question-function (mop pred)

(let ((answer (convertstr_symbol (subseq (symbol-name (pred-base pred))

1 i)))

(file (role-filler file mop)))

for (slot :in (mop-slots mop))

:do (cond ((equal (slot-role slot) answer)

(print (subseq (svmbol-name (role-filler answer file)) 4)))

(t (print (subseq (symbol-name

(slot-filler slot)) 4)))))))

First, the answer is set to the last part of the question MOP's title :

m-question-size; thus the target is size. File is set to the MOP for

17

the filename entered: testrun.file. The slots for the question are

looped through. If the slot does not have role the same as answer

(target of the question), then the filler (file-name) is printed. Slots

are stored in the desired order for printing. If the slot's role is the

same as the target of the question, then the slot-filler for that role

within the file is found to print the answer for the file. Currently

the question is saved for debugging purposes. Because the answer can be

re-derived at any time, it is desirable that the new MOP recognized be

deleted right after the question is answered.

6.2.1.5 Problem Questions

This is the most difficult part of the system. The interface should be

able to determine why certain problems occur, such as a file not being

found. The user types in a question about a current problem relating to

files and receives answers or help to determine the source of the

problem. The problem questions are again entered as MOPs, and

corresponding trigger questions for problems are entered using

defphrase. Below is a common type of problem query, triggered by

queries such as "where is file testrun.lsp?".

; functions for finding a file problem

(de fun find-file-problem-function (mop pred)

for (slot :in (mop-slots (pred-base pred)))

:do (cond ((or (equal (slot-role slot) 'M-FILE)

(equal 'slot-role slot) 'GETCODE))

((and (not (equal (Slot-role slot) M-FILE))

(not (equal (slot-role slot) 'GETCODE)))

(print funcall (slot-filler slot)

(slot-role slot)

(slot-filler (mop-slots mop))))

; example: funcall calls the code for find-file-past-function for mv

or rm

(defun find-file-past-function (mopname file)

(setq found nil)

(for (mop :in (mop-specs mopname))

:do (cond ((equal file (get-filler 'FILE mop))

(setq found mop))

)) found)

; found is set to the mop containing the filename

; example: I-M-RM. 125 for arm of file TESTRUN. LSP

; defmop relating to access of file mop problem

(defmop m-mistakes (m-root))

(defmop m-error-typing (m-mistakes) (file m-file))

(defmop m-error-rm (m-mistakes) (file m-file))

(defmop m-error-mv (m-mistakes) (file m-file)

(defmop m-error-cd (m-mistakes) (file m-file)

(defmop m-error-access (m-mistakes) (file m-file)

18

(defmop m-problem-answers (m-root))

(defmop m-find-fi I e-probl em (m-probl em-ans wets)

(getcode find-file-problem-function)

(m-file m-file)

(rm find-file-past-function)

(my find-file-past-function)

(file find-file-past-function)

; defphrases relating to problem - access of file

; defphrase m-find-file-problem where is file))

After the system determines the MOP is a find-file problem, it would

loop through the slots for m-find-file-problem, executing the code

listed as the filler. The filename and the MOPs that will have their

descendants searched are passed to the code. The code is stored in the

filler of the slots. The code to search for MOPs that will solve the

problem is executed and found is set to the specific MOP solving the

problem.

7 BIBLIOGRAPHY

[1]

[2]
[3]

[41
[5]

[6]

Inside Case-Based Reasoning, Riesbeck, Christopher,

and R. Schank, Lawrence Erlbaum Associates, 1989

Common LISPcraft, Wilensky, Robert, Norton Books, 1986

The Way of Z, Jacky, Jonathan, Cambridge University Press,1996

Understanding Z, J.M. Spivey, Cambridge University Press, 1988

PROLOG Programming for Artificial Intelligence, 3rd ed.,

Bratko, Ivan, Addison-Wesley, 2001

Artificial Intelligence, 3rd ed., Winston, Patrick H.,

Addison-Wesley, 1992

19

